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Linked Data Representations

• Linked data representations such as lists, stacks, 
queues, sets and trees are very useful in 
Computer Science and applications. E.g., in 
Databases, Artificial Intelligence, Graphics, Web, 
Hardware etc.

• We will cover all of these data structures in this 
course.

• Linked data representations are useful when it is 
difficult to predict the size and shape of the data 
structures needed.
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Levels of Data Abstraction
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Pointers

• The best way to realize linked data 
representations is using pointers.

• A pointer (δείκτης) is a variable that 
references a unit of storage.

• Graphical notation (α is a pointer to β):

α: β:β

α:

β:
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Pointers in C

typedef int *IntegerPointer;

IntegerPointer A, B;       

/* the declaration int *A, *B has the same effect */

A=(IntegerPointer)malloc(sizeof(int));

B=(int *)malloc(sizeof(int));

The above code results in the following situation:

A:

B:
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typedef

• C provides a facility called typedef for 
creating new data type names.

• typedefs are useful because:

– They help to organize our data type definitions 
nicely.

– They provide better documentation for our 
program.
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Pointers in C (cont’d)

• The previous statements first define a new data type 
name IntegerPointer which consists of a pointer 
to an integer.

• Then they define two variables A and B of type 
IntegerPointer.

• Then they allocate two blocks of storage for two 
integers and place two pointers to them in A and B.

• The void pointer returned by malloc is casted into a 
pointer to a block of storage holding an integer. You 
can omit this casting (προσαρμογή) and your program 
will still work correctly because the conversion to the 
required pointer type is done implicitly.
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malloc

• void *malloc(size_t size) is a function of 
the standard library stdlib.

• malloc returns a pointer to space for an object 
of size size, or NULL if the request cannot be 
satisfied. The space is obtained from the heap
and is uninitialized.

• This is called dynamic storage allocation 
(δυναμική δέσμευση μνήμης).

• size_t is the unsigned integer type returned by 
the sizeof operator.
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Program Memory

Data Structures and Programming 
Techniques

9



The Operator *

*A=5;

*B=17;

A:

B:

5

17

The unary operator * (τελεστής αναφοράς) on the left side of the assignment 
designates the storage location to which the pointer A refers. We call this 
pointer dereferencing.
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The Operator &

int X=3;

A=&X;

A:

X:

3

The unary operator & (τελεστής διεύθυνσης) gives the address of some object 
(in the above diagram the address of variable X).
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Pointers in C - Quiz (cont’d)

• Consider again the following statements:

int *A, *B;

*A=5;

*B=17;

• Question: What happens if we now execute 
B=20;?
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Pointers in C - Quiz (cont’d)

• Answer: We have a type mismatch error since 
20 is an integer but B holds a pointer to 
integers.

• The compiler gcc will give a warning: 
“assignment makes pointer from an integer 
without a cast.”
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Pointers in C - Quiz (cont’d)

Suppose we start with the diagram below:

A:

B:

5

17
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Pointers in C - Quiz (cont’d)

Question: If we execute A=B; which one of the following two diagrams 
results?

A:

B:

17

17

A: 5

B: 17
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Pointers in C - Quiz (cont’d)

A=B;

A:

B:

5

17

Answer: The right diagram. Now A and B are called aliases because they name 
the same storage location. Note that the storage block containing 5 is now inaccessible. 
Modern programming languages have a garbage collection facility for such storage.

Data Structures and Programming 
Techniques

16



Recycling Used Storage

We can reclaim the storage space to which A points by using the reclamation 
function free:

free(A);

A=B;

A:

B: 17
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Dangling Pointers

Let us now consider the following situation:

Question: Suppose now we call free(B). What is the value of *A+3 then?

A:

B: 17

Data Structures and Programming 
Techniques

18

.



Dangling Pointers (cont’d)

Answer: We do not know. Storage location A now contains a dangling 
pointer and should not be used.

A:

B:
?
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NULL

There is a special address denoted by the constant NULL which is not the 
address of any node. The situation that results after we execute A=NULL; is 
shown graphically below:

A:

Data Structures and Programming 
Techniques

20

NULL is automatically considered to be a value of any pointer type that can be defined in
C. NULL is defined in  the standard input/output library <stdio.h> and has the value 0.

.

Now we cannot access the storage location to which A pointed to earlier. So 
something like *A=5; will give us “segmentation fault”.



Pointers and Function Arguments

• Let us suppose that we have a sorting algorithm that works by exchanging 
two out-of-order elements A and B using a function Swap.

• Question: Can we call Swap(A,B) where the Swap function is defined 
as follows?

void Swap(int X, int Y)

{

int Temp;

Temp=X;

X=Y;

Y=Temp;

}
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Pointers and Function Arguments 
(cont’d)

• Answer: No!

• Why?

– Because C passes arguments to functions by value 
(κατ’ αξία) therefore Swap can’t affect the 
arguments A and B in the function that called it. 
Swap only swaps copies of A and B.
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What we Need in Pictures
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A:

Q:

B:

P:

In the calling function:

In Swap:



The Correct Function Swap

void Swap(int *P, int *Q)

{

int Temp;

Temp=*P;

*P=*Q;

*Q=Temp;

}

Swap uses the operator * to do the exchange of values.
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Pointers and Function Arguments 
(cont’d)

• The way to have the desired effect is for the 
calling function to pass pointers to the values 
to be changed: 

Swap(&A,&B);
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Linked Lists

• Α linked list is a sequence of nodes in which each node, 
except the last, links to a successor node.

• We usually have a pointer variable L containing a pointer to 
the first node on the list.

• The link field of the last node contains NULL.

• Example: a list representing a flight

L:

Airport

.
Link AirportLink LinkAirport

DUS ORD SAN
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Diagrammatic Notation for Linked Lists

L:

Info Link InfoInfo LinkLink

Last:

.
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Declaring Data Types for Linked Lists

The following statements declare appropriate data types for our linked list:

typedef char AirportCode[4];

typedef struct NodeTag {

AirportCode Airport;

struct NodeTag *Link;

} NodeType;

typedef NodeType *NodePointer;

We can now define variables of these datatypes:

NodePointer L;

or equivalently

NodeType *L;

Data Structures and Programming 
Techniques

28



Structures in C

• A structure (δομή) is a collection of one or 
more variables possibly of different types, 
grouped together under a single name.

• The variables named in a structure are called 
members (μέλη).

• In the previous structure definition, the name 
NodeTag is called a structure tag and can be 
used subsequently as a shorthand for the part 
of the declaration in braces.
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Question

• Given the previous typedefs, what would be the output 
of the following piece of code:

AirportCode C;

NodePointer L;

strcpy(C, “BRU”);

printf(“%s\n”, C);

L=(NodePointer)malloc(sizeof(NodeType));

strcpy(L->Airport, C);

printf(“%s\n”, L->Airport);
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Answer

BRU

BRU
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The Function strcpy

• The function strcpy(s,ct) copies string 
ct to string s, including ‘\0’. It returns s.

• The function is defined in header file 
<string.h>.
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Accessing Members of a Structure

• To access a member of a structure, we use the 
dot notation as follows:

structure-name.member

• To access a member of a structure pointed to 
by a pointer P, we can use the notation 
(*P).member or the equivalent arrow 
notation P->member.
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Question

• Why didn’t I write C=“BRU”; and 

L->Airport=“BRU” in the previous piece

of code?
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Answer

• The assignment C=“BRU”; assigns to 
variable C a pointer to the character array 
“BRU”. This would result in an error (type 
mismatch) because C is of type 
AirportCode.

• Similarly for the second assignment.
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Question

• Given the previous typedefs, what does the following piece of code 
do?:

NodePointer L, M;

L=(NodePointer)malloc(sizeof(NodeType));

strcpy(L->Airport, “DUS”);

M=(NodePointer)malloc(sizeof(NodeType));

strcpy(M->Airport, “ORD”);

L->Link=M;

M->Link=NULL;
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Answer

NodePointer L, M;

L=(NodePointer)malloc(sizeof(NodeType));

strcpy(L->Airport, “DUS”);

M=(NodePointer)malloc(sizeof(NodeType));

strcpy(M->Airport, “ORD”);

L:

Airport

.
Link LinkAirport

DUS ORD
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Answer (cont’d)

L->Link=M;

M->Link=NULL;

L:

Airport

.
Link LinkAirport

DUS ORD
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Inserting a New Second Node on a List

• Example: adding one more airport to our list 
representing a flight

L:

Airport

.
Link AirportLink LinkAirport

DUS ORD SAN

BRU

Airport Link
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Inserting a New Second Node on a List

void InsertNewSecondNode(void)

{

NodeType *N;

N=(NodeType *)malloc(sizeof(NodeType));

strcpy(N->Airport,”BRU”);

N->Link=L->Link;

L->Link=N;

}
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Inserting a New Second Node on a List 
(cont’d)

Let us execute the previous function step by step:

N=(NodeType *)malloc(sizeof(NodeType));

strcpy(N->Airport,”BRU”);

?

Airport Link

N: ?

BRU

Airport

N: ?

Link
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Inserting a New Second Node on a List 
(cont’d)

N->Link=L->Link;

BRU

Airport

N: ?

Link

X

L:

Airport

.
Link AirportLink LinkAirport

DUS ORD SAN
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Inserting a New Second Node on a List 
(cont’d)

L->Link=N;

BRU

Airport

N:

Link

XL:

Airport

.
Link AirportLink LinkAirport

DUS ORD SAN
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Comments

• In the function InsertNewSecondNode, 
variable N is local. Therefore it vanishes after 
the end of the function execution. However, 
the dynamically allocated node remains in 
existence after the function has terminated. 
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Searching for an Item on a List

• Let us now define a function which takes as 
input an airport code A and a pointer to a list 
L and returns a pointer to the first node of L
which has that code. If the code cannot be 
found, then the function returns NULL.
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Searching for an Item on a List

NodeType *ListSearch(char *A, NodeType *L)

{

NodeType *N;

N=L;

while (N != NULL){

if (strcmp(N->Airport,A)==0){

return N;

} else {

N=N->Link;

}

}

return N;

}
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Comments

• The function strcmp(cs,ct) compares 
string cs to string ct and returns a negative 
integer if cs precedes ct alphabetically, 0
if cs==ct and a positive integer if cs
follows ct alphabetically (using the ASCII 
codes of the characters of the strings).
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Comments (cont’d)

• Let us assume that we have the list below and 
we are searching for item “ORD”. When the 
initialization statement N=L is executed, we 
have the following situation:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS
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Comments (cont’d)

• Later on, inside the while loop, the 
statement N=N->Link is executed and we 
have the following situation:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS
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Comments (cont’d)

• Then, the if inside the while loop is executed and 
the value of N is returned. Assuming that we did not 
find “ORD” here, the statement N=N->Link is 
again executed and we have the following situation:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS
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Comments (cont’d)

• Then, the while loop is executed one more time 
and the statement N=N->Link results in the 
following situation:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS
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Comments (cont’d)

• Then, we exit from the while loop and the 
statement return N returns NULL:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS
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Deleting the Last Node of a List

• Let us now write a function to delete the last 
node of a list L.

• If L is empty, there is nothing to do.

• If L has one node, then we need to dispose of 
the node’s storage and then set L to be the 
empty list.

• If L has two or more nodes then we can use a 
pair of pointers to implement the required 
functionality as shown on the next slides.
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Question

• Is the following function definition 
appropriate?

void DeleteLastNode(NodeType *L)
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Deleting the Last Node of a List 
(cont’d)

• No! 

• Assume that in the main program, we have a list and 
L1 is the pointer to its first element.

• We need to pass the address of (the pointer to the first 
element of the list) L1, for which we want to delete 
the last node, as an actual parameter in the form of 
&L1 enabling us to change the contents of L1 inside 
the function DeleteLastNode.

• Therefore, the corresponding formal parameter of the 
function DeleteLastNode should be a pointer to a 
pointer to NodeType.
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Deleting the Last Node of a List

void DeleteLastNode(NodeType **L)

{

NodeType *PreviousNode, *CurrentNode;

if (*L != NULL) {

if ((*L)->Link == NULL){

free(*L);

*L=NULL;

} else {

PreviousNode=*L;

CurrentNode=(*L)->Link;

while (CurrentNode->Link != NULL){

PreviousNode=CurrentNode;

CurrentNode=CurrentNode->Link;

}

PreviousNode->Link=NULL;

free(CurrentNode);

}

}

}
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Comments

• When we advance the pointer pair to the next 
pair of nodes, the situation is as follows:

*L:

Airport

.
AirportLink

SAN

Link Airport Link

CurrentNode:

ORDDUS

X

PreviousNode:

X
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Why **?

• This is for the case that the list in the calling 
function has one node only.

• Then, the value of pointer (e.g., L1) to the 
only element of that list must be set to NULL
in the function  DeleteLastNode.

• This can only be done by passing &L1 in the 
call of the function DeleteLastNode.
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Inserting a New Last Node on a List

void InsertNewLastNode(char *A, NodeType **L)

{

NodeType *N, *P;

N=(NodeType *)malloc(sizeof(NodeType));

strcpy(N->Airport, A);

N->Link=NULL;

if (*L == NULL) {

*L=N;

} else {

P=*L;

while (P->Link != NULL) P=P->Link; 

P->Link=N;

}

}
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Comments

• P is used to move across the list until we find 
the last node.

*L:

Airport

.
AirportLink

SAN

Link Airport Link

ORDDUS

P:
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Why **?

• This is for the case that the list in the calling 
function is empty.

• Then, the value of pointer (e.g.,  L1) to the 
first element of that list must be set to point 
to the new node created in the function  
InsertNewLastNode.

• This can only be done by passing &L1 in the 
call of the function InsertNewLastNode.
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Question

• Assume now that we have a pointer Last
pointing to the last element of a linked list.

• How would the operations of deleting the last 
node of a list or inserting a new last node on a 
list change to exploit the pointer Last?
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Question (cont’d)

L:

Info Link InfoInfo LinkLink

Last:

.

Data Structures and Programming 
Techniques

63



Printing a List

void PrintList(NodeType *L)

{

NodeType *N;

printf(“(“);

N=L;

while(N != NULL) {

printf(“%s”, N->Airport);

N=N->Link;

if (N!=NULL) printf(“,”);

}

printf(“)\n”);

}
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Examples

()

(ATH)

(ATH, FRA, JFK, SFO)

Data Structures and Programming 
Techniques

65



The Main Program

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

typedef char AirportCode[4];

typedef struct NodeTag {

AirportCode Airport;

struct NodeTag *Link;

} NodeType;

typedef NodeType *NodePointer;

/* function prototypes */

void InsertNewLastNode(char *, NodeType **);

void DeleteLastNode(NodeType **);

NodeType *ListSearch(char *, NodeType *);

void PrintList(NodeType *);
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The Main Program (cont’d)

int main(void)

{

NodeType *L;

L=NULL;

PrintList(L);

InsertNewLastNode(“DUS”, &L);

InsertNewLastNode(“ORD”, &L);

InsertNewLastNode(“SAN”, &L);  

PrintList(L);

DeleteLastNode(&L);

PrintList(L);

if (ListSearch(“DUS",L) != NULL) {

printf(“DUS is an element of the list\n");

}      

}

/* Code for functions InsertNewLastNode, PrintList,  */

/* ListSearch and DeleteLastNode goes here. */
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Linked Lists vs. Arrays

• Compare the data structure linked list that we 
defined in these slides with arrays.

• What are the pros and cons of each data 
structure?
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Linked Lists vs. Arrays

• The simplicity of inserting and deleting a node 
anywhere is what characterizes linked lists. This 
operation is more involved in an array because all the 
elements of the array that follow the affected element 
need to be moved. 

• Linked lists are not appropriate for finding the i-th
element of a list because we have to follow i pointers. 
In an array, the same functionality is implemented with 
one operation.

• Such discussion is important when we want to choose 
a data structure for solving a practical problem.
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Readings

• T. A. Standish. Data Structures, Algorithms and 
Software Principles in C.

Chapter 2.

• (προαιρετικά) R. Sedgewick. Αλγόριθμοι σε C. 
Κεφάλαιο 3.
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