
Linked Data Representations

Manolis Koubarakis

Data Structures and Programming
Techniques

1

Linked Data Representations

• Linked data representations such as lists, stacks,
queues, sets and trees are very useful in
Computer Science and applications. E.g., in
Databases, Artificial Intelligence, Graphics, Web,
Hardware etc.

• We will cover all of these data structures in this
course.

• Linked data representations are useful when it is
difficult to predict the size and shape of the data
structures needed.

Data Structures and Programming
Techniques

2

Levels of Data Abstraction

Data Structures and Programming
Techniques

3

Lists Stacks Sets Trees Queues ADTs

Sequential
Representations

Linked
Representations

Arrays Strings Arrays
of

Records

Pointer
Representations

Parallel
Arrays

Pointers

• The best way to realize linked data
representations is using pointers.

• A pointer (δείκτης) is a variable that
references a unit of storage.

• Graphical notation (α is a pointer to β):

α: β:β

α:

β:
Data Structures and Programming

Techniques
4

Pointers in C

typedef int *IntegerPointer;

IntegerPointer A, B;

/* the declaration int *A, *B has the same effect */

A=(IntegerPointer)malloc(sizeof(int));

B=(int *)malloc(sizeof(int));

The above code results in the following situation:

A:

B:

Data Structures and Programming
Techniques

5

typedef

• C provides a facility called typedef for
creating new data type names.

• typedefs are useful because:

– They help to organize our data type definitions
nicely.

– They provide better documentation for our
program.

Data Structures and Programming
Techniques

6

Pointers in C (cont’d)

• The previous statements first define a new data type
name IntegerPointer which consists of a pointer
to an integer.

• Then they define two variables A and B of type
IntegerPointer.

• Then they allocate two blocks of storage for two
integers and place two pointers to them in A and B.

• The void pointer returned by malloc is casted into a
pointer to a block of storage holding an integer. You
can omit this casting (προσαρμογή) and your program
will still work correctly because the conversion to the
required pointer type is done implicitly.

Data Structures and Programming
Techniques

7

malloc

• void *malloc(size_t size) is a function of
the standard library stdlib.

• malloc returns a pointer to space for an object
of size size, or NULL if the request cannot be
satisfied. The space is obtained from the heap
and is uninitialized.

• This is called dynamic storage allocation
(δυναμική δέσμευση μνήμης).

• size_t is the unsigned integer type returned by
the sizeof operator.

Data Structures and Programming
Techniques

8

Program Memory

Data Structures and Programming
Techniques

9

The Operator *

*A=5;

*B=17;

A:

B:

5

17

The unary operator * (τελεστής αναφοράς) on the left side of the assignment
designates the storage location to which the pointer A refers. We call this
pointer dereferencing.

Data Structures and Programming
Techniques

10

The Operator &

int X=3;

A=&X;

A:

X:

3

The unary operator & (τελεστής διεύθυνσης) gives the address of some object
(in the above diagram the address of variable X).

Data Structures and Programming
Techniques

11

Pointers in C - Quiz (cont’d)

• Consider again the following statements:

int *A, *B;

*A=5;

*B=17;

• Question: What happens if we now execute
B=20;?

Data Structures and Programming
Techniques

12

Pointers in C - Quiz (cont’d)

• Answer: We have a type mismatch error since
20 is an integer but B holds a pointer to
integers.

• The compiler gcc will give a warning:
“assignment makes pointer from an integer
without a cast.”

Data Structures and Programming
Techniques

13

Pointers in C - Quiz (cont’d)

Suppose we start with the diagram below:

A:

B:

5

17

Data Structures and Programming
Techniques

14

Pointers in C - Quiz (cont’d)

Question: If we execute A=B; which one of the following two diagrams
results?

A:

B:

17

17

A: 5

B: 17

Data Structures and Programming
Techniques

15

Pointers in C - Quiz (cont’d)

A=B;

A:

B:

5

17

Answer: The right diagram. Now A and B are called aliases because they name
the same storage location. Note that the storage block containing 5 is now inaccessible.
Modern programming languages have a garbage collection facility for such storage.

Data Structures and Programming
Techniques

16

Recycling Used Storage

We can reclaim the storage space to which A points by using the reclamation
function free:

free(A);

A=B;

A:

B: 17

Data Structures and Programming
Techniques

17

Dangling Pointers

Let us now consider the following situation:

Question: Suppose now we call free(B). What is the value of *A+3 then?

A:

B: 17

Data Structures and Programming
Techniques

18

.

Dangling Pointers (cont’d)

Answer: We do not know. Storage location A now contains a dangling
pointer and should not be used.

A:

B:
?

Data Structures and Programming
Techniques

19

It is reasonable to consider this to be a programming error even though the compiler
or the runtime system will not catch it.

NULL

There is a special address denoted by the constant NULL which is not the
address of any node. The situation that results after we execute A=NULL; is
shown graphically below:

A:

Data Structures and Programming
Techniques

20

NULL is automatically considered to be a value of any pointer type that can be defined in
C. NULL is defined in the standard input/output library <stdio.h> and has the value 0.

.

Now we cannot access the storage location to which A pointed to earlier. So
something like *A=5; will give us “segmentation fault”.

Pointers and Function Arguments

• Let us suppose that we have a sorting algorithm that works by exchanging
two out-of-order elements A and B using a function Swap.

• Question: Can we call Swap(A,B) where the Swap function is defined
as follows?

void Swap(int X, int Y)

{

int Temp;

Temp=X;

X=Y;

Y=Temp;

}

Data Structures and Programming
Techniques

21

Pointers and Function Arguments
(cont’d)

• Answer: No!

• Why?

– Because C passes arguments to functions by value
(κατ’ αξία) therefore Swap can’t affect the
arguments A and B in the function that called it.
Swap only swaps copies of A and B.

Data Structures and Programming
Techniques

22

What we Need in Pictures

Data Structures and Programming
Techniques

23

A:

Q:

B:

P:

In the calling function:

In Swap:

The Correct Function Swap

void Swap(int *P, int *Q)

{

int Temp;

Temp=*P;

*P=*Q;

*Q=Temp;

}

Swap uses the operator * to do the exchange of values.

Data Structures and Programming
Techniques

24

Pointers and Function Arguments
(cont’d)

• The way to have the desired effect is for the
calling function to pass pointers to the values
to be changed:

Swap(&A,&B);

Data Structures and Programming
Techniques

25

Linked Lists

• Α linked list is a sequence of nodes in which each node,
except the last, links to a successor node.

• We usually have a pointer variable L containing a pointer to
the first node on the list.

• The link field of the last node contains NULL.

• Example: a list representing a flight

L:

Airport

.
Link AirportLink LinkAirport

DUS ORD SAN

Data Structures and Programming
Techniques

26

Diagrammatic Notation for Linked Lists

L:

Info Link InfoInfo LinkLink

Last:

.

Data Structures and Programming
Techniques

27

Declaring Data Types for Linked Lists

The following statements declare appropriate data types for our linked list:

typedef char AirportCode[4];

typedef struct NodeTag {

AirportCode Airport;

struct NodeTag *Link;

} NodeType;

typedef NodeType *NodePointer;

We can now define variables of these datatypes:

NodePointer L;

or equivalently

NodeType *L;

Data Structures and Programming
Techniques

28

Structures in C

• A structure (δομή) is a collection of one or
more variables possibly of different types,
grouped together under a single name.

• The variables named in a structure are called
members (μέλη).

• In the previous structure definition, the name
NodeTag is called a structure tag and can be
used subsequently as a shorthand for the part
of the declaration in braces.

Data Structures and Programming
Techniques

29

Question

• Given the previous typedefs, what would be the output
of the following piece of code:

AirportCode C;

NodePointer L;

strcpy(C, “BRU”);

printf(“%s\n”, C);

L=(NodePointer)malloc(sizeof(NodeType));

strcpy(L->Airport, C);

printf(“%s\n”, L->Airport);

Data Structures and Programming
Techniques

30

Answer

BRU

BRU

Data Structures and Programming
Techniques

31

The Function strcpy

• The function strcpy(s,ct) copies string
ct to string s, including ‘\0’. It returns s.

• The function is defined in header file
<string.h>.

Data Structures and Programming
Techniques

32

Accessing Members of a Structure

• To access a member of a structure, we use the
dot notation as follows:

structure-name.member

• To access a member of a structure pointed to
by a pointer P, we can use the notation
(*P).member or the equivalent arrow
notation P->member.

Data Structures and Programming
Techniques

33

Question

• Why didn’t I write C=“BRU”; and

L->Airport=“BRU” in the previous piece

of code?

Data Structures and Programming
Techniques

34

Answer

• The assignment C=“BRU”; assigns to
variable C a pointer to the character array
“BRU”. This would result in an error (type
mismatch) because C is of type
AirportCode.

• Similarly for the second assignment.

Data Structures and Programming
Techniques

35

Question

• Given the previous typedefs, what does the following piece of code
do?:

NodePointer L, M;

L=(NodePointer)malloc(sizeof(NodeType));

strcpy(L->Airport, “DUS”);

M=(NodePointer)malloc(sizeof(NodeType));

strcpy(M->Airport, “ORD”);

L->Link=M;

M->Link=NULL;

Data Structures and Programming
Techniques

36

Answer

NodePointer L, M;

L=(NodePointer)malloc(sizeof(NodeType));

strcpy(L->Airport, “DUS”);

M=(NodePointer)malloc(sizeof(NodeType));

strcpy(M->Airport, “ORD”);

L:

Airport

.
Link LinkAirport

DUS ORD

Data Structures and Programming
Techniques

37

M:

Answer (cont’d)

L->Link=M;

M->Link=NULL;

L:

Airport

.
Link LinkAirport

DUS ORD

Data Structures and Programming
Techniques

38

M: .

Inserting a New Second Node on a List

• Example: adding one more airport to our list
representing a flight

L:

Airport

.
Link AirportLink LinkAirport

DUS ORD SAN

BRU

Airport Link

Data Structures and Programming
Techniques

39

Inserting a New Second Node on a List

void InsertNewSecondNode(void)

{

NodeType *N;

N=(NodeType *)malloc(sizeof(NodeType));

strcpy(N->Airport,”BRU”);

N->Link=L->Link;

L->Link=N;

}

Data Structures and Programming
Techniques

40

Inserting a New Second Node on a List
(cont’d)

Let us execute the previous function step by step:

N=(NodeType *)malloc(sizeof(NodeType));

strcpy(N->Airport,”BRU”);

?

Airport Link

N: ?

BRU

Airport

N: ?

Link

Data Structures and Programming
Techniques

41

Inserting a New Second Node on a List
(cont’d)

N->Link=L->Link;

BRU

Airport

N: ?

Link

X

L:

Airport

.
Link AirportLink LinkAirport

DUS ORD SAN

Data Structures and Programming
Techniques

42

Inserting a New Second Node on a List
(cont’d)

L->Link=N;

BRU

Airport

N:

Link

XL:

Airport

.
Link AirportLink LinkAirport

DUS ORD SAN

Data Structures and Programming
Techniques

43

Comments

• In the function InsertNewSecondNode,
variable N is local. Therefore it vanishes after
the end of the function execution. However,
the dynamically allocated node remains in
existence after the function has terminated.

Data Structures and Programming
Techniques

44

Searching for an Item on a List

• Let us now define a function which takes as
input an airport code A and a pointer to a list
L and returns a pointer to the first node of L
which has that code. If the code cannot be
found, then the function returns NULL.

Data Structures and Programming
Techniques

45

Searching for an Item on a List

NodeType *ListSearch(char *A, NodeType *L)

{

NodeType *N;

N=L;

while (N != NULL){

if (strcmp(N->Airport,A)==0){

return N;

} else {

N=N->Link;

}

}

return N;

}

Data Structures and Programming
Techniques

46

Comments

• The function strcmp(cs,ct) compares
string cs to string ct and returns a negative
integer if cs precedes ct alphabetically, 0
if cs==ct and a positive integer if cs
follows ct alphabetically (using the ASCII
codes of the characters of the strings).

Data Structures and Programming
Techniques

47

Comments (cont’d)

• Let us assume that we have the list below and
we are searching for item “ORD”. When the
initialization statement N=L is executed, we
have the following situation:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS

Data Structures and Programming
Techniques

48

Comments (cont’d)

• Later on, inside the while loop, the
statement N=N->Link is executed and we
have the following situation:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS

Data Structures and Programming
Techniques

49

Comments (cont’d)

• Then, the if inside the while loop is executed and
the value of N is returned. Assuming that we did not
find “ORD” here, the statement N=N->Link is
again executed and we have the following situation:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS

Data Structures and Programming
Techniques

50

Comments (cont’d)

• Then, the while loop is executed one more time
and the statement N=N->Link results in the
following situation:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS

Data Structures and Programming
Techniques

51

.

Comments (cont’d)

• Then, we exit from the while loop and the
statement return N returns NULL:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS

Data Structures and Programming
Techniques

52

.

Deleting the Last Node of a List

• Let us now write a function to delete the last
node of a list L.

• If L is empty, there is nothing to do.

• If L has one node, then we need to dispose of
the node’s storage and then set L to be the
empty list.

• If L has two or more nodes then we can use a
pair of pointers to implement the required
functionality as shown on the next slides.

Data Structures and Programming
Techniques

53

Question

• Is the following function definition
appropriate?

void DeleteLastNode(NodeType *L)

Data Structures and Programming
Techniques

54

Deleting the Last Node of a List
(cont’d)

• No!

• Assume that in the main program, we have a list and
L1 is the pointer to its first element.

• We need to pass the address of (the pointer to the first
element of the list) L1, for which we want to delete
the last node, as an actual parameter in the form of
&L1 enabling us to change the contents of L1 inside
the function DeleteLastNode.

• Therefore, the corresponding formal parameter of the
function DeleteLastNode should be a pointer to a
pointer to NodeType.

Data Structures and Programming
Techniques

55

Deleting the Last Node of a List

void DeleteLastNode(NodeType **L)

{

NodeType *PreviousNode, *CurrentNode;

if (*L != NULL) {

if ((*L)->Link == NULL){

free(*L);

*L=NULL;

} else {

PreviousNode=*L;

CurrentNode=(*L)->Link;

while (CurrentNode->Link != NULL){

PreviousNode=CurrentNode;

CurrentNode=CurrentNode->Link;

}

PreviousNode->Link=NULL;

free(CurrentNode);

}

}

}

Data Structures and Programming
Techniques

56

Comments

• When we advance the pointer pair to the next
pair of nodes, the situation is as follows:

*L:

Airport

.
AirportLink

SAN

Link Airport Link

CurrentNode:

ORDDUS

X

PreviousNode:

X

Data Structures and Programming
Techniques

57

L:

Why **?

• This is for the case that the list in the calling
function has one node only.

• Then, the value of pointer (e.g., L1) to the
only element of that list must be set to NULL
in the function DeleteLastNode.

• This can only be done by passing &L1 in the
call of the function DeleteLastNode.

Data Structures and Programming
Techniques

58

Inserting a New Last Node on a List

void InsertNewLastNode(char *A, NodeType **L)

{

NodeType *N, *P;

N=(NodeType *)malloc(sizeof(NodeType));

strcpy(N->Airport, A);

N->Link=NULL;

if (*L == NULL) {

*L=N;

} else {

P=*L;

while (P->Link != NULL) P=P->Link;

P->Link=N;

}

}

Data Structures and Programming
Techniques

59

Comments

• P is used to move across the list until we find
the last node.

*L:

Airport

.
AirportLink

SAN

Link Airport Link

ORDDUS

P:

Data Structures and Programming
Techniques

60

L:

.
Airport

SFO

Link

N:

Why **?

• This is for the case that the list in the calling
function is empty.

• Then, the value of pointer (e.g., L1) to the
first element of that list must be set to point
to the new node created in the function
InsertNewLastNode.

• This can only be done by passing &L1 in the
call of the function InsertNewLastNode.

Data Structures and Programming
Techniques

61

Question

• Assume now that we have a pointer Last
pointing to the last element of a linked list.

• How would the operations of deleting the last
node of a list or inserting a new last node on a
list change to exploit the pointer Last?

Data Structures and Programming
Techniques

62

Question (cont’d)

L:

Info Link InfoInfo LinkLink

Last:

.

Data Structures and Programming
Techniques

63

Printing a List

void PrintList(NodeType *L)

{

NodeType *N;

printf(“(“);

N=L;

while(N != NULL) {

printf(“%s”, N->Airport);

N=N->Link;

if (N!=NULL) printf(“,”);

}

printf(“)\n”);

}

Data Structures and Programming
Techniques

64

Examples

()

(ATH)

(ATH, FRA, JFK, SFO)

Data Structures and Programming
Techniques

65

The Main Program

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

typedef char AirportCode[4];

typedef struct NodeTag {

AirportCode Airport;

struct NodeTag *Link;

} NodeType;

typedef NodeType *NodePointer;

/* function prototypes */

void InsertNewLastNode(char *, NodeType **);

void DeleteLastNode(NodeType **);

NodeType *ListSearch(char *, NodeType *);

void PrintList(NodeType *);

Data Structures and Programming
Techniques

66

The Main Program (cont’d)

int main(void)

{

NodeType *L;

L=NULL;

PrintList(L);

InsertNewLastNode(“DUS”, &L);

InsertNewLastNode(“ORD”, &L);

InsertNewLastNode(“SAN”, &L);

PrintList(L);

DeleteLastNode(&L);

PrintList(L);

if (ListSearch(“DUS",L) != NULL) {

printf(“DUS is an element of the list\n");

}

}

/* Code for functions InsertNewLastNode, PrintList, */

/* ListSearch and DeleteLastNode goes here. */

Data Structures and Programming
Techniques

67

Linked Lists vs. Arrays

• Compare the data structure linked list that we
defined in these slides with arrays.

• What are the pros and cons of each data
structure?

Data Structures and Programming
Techniques

68

Linked Lists vs. Arrays

• The simplicity of inserting and deleting a node
anywhere is what characterizes linked lists. This
operation is more involved in an array because all the
elements of the array that follow the affected element
need to be moved.

• Linked lists are not appropriate for finding the i-th
element of a list because we have to follow i pointers.
In an array, the same functionality is implemented with
one operation.

• Such discussion is important when we want to choose
a data structure for solving a practical problem.

Data Structures and Programming
Techniques

69

Readings

• T. A. Standish. Data Structures, Algorithms and
Software Principles in C.

Chapter 2.

• (προαιρετικά) R. Sedgewick. Αλγόριθμοι σε C.
Κεφάλαιο 3.

Data Structures and Programming
Techniques

70

	Slide 1: Linked Data Representations
	Slide 2: Linked Data Representations
	Slide 3: Levels of Data Abstraction
	Slide 4: Pointers
	Slide 5: Pointers in C
	Slide 6: typedef
	Slide 7: Pointers in C (cont’d)
	Slide 8: malloc
	Slide 9: Program Memory
	Slide 10: The Operator *
	Slide 11: The Operator &
	Slide 12: Pointers in C - Quiz (cont’d)
	Slide 13: Pointers in C - Quiz (cont’d)
	Slide 14: Pointers in C - Quiz (cont’d)
	Slide 15: Pointers in C - Quiz (cont’d)
	Slide 16: Pointers in C - Quiz (cont’d)
	Slide 17: Recycling Used Storage
	Slide 18: Dangling Pointers
	Slide 19: Dangling Pointers (cont’d)
	Slide 20: NULL
	Slide 21: Pointers and Function Arguments
	Slide 22: Pointers and Function Arguments (cont’d)
	Slide 23: What we Need in Pictures
	Slide 24: The Correct Function Swap
	Slide 25: Pointers and Function Arguments (cont’d)
	Slide 26: Linked Lists
	Slide 27: Diagrammatic Notation for Linked Lists
	Slide 28: Declaring Data Types for Linked Lists
	Slide 29: Structures in C
	Slide 30: Question
	Slide 31: Answer
	Slide 32: The Function strcpy
	Slide 33: Accessing Members of a Structure
	Slide 34: Question
	Slide 35: Answer
	Slide 36: Question
	Slide 37: Answer
	Slide 38: Answer (cont’d)
	Slide 39: Inserting a New Second Node on a List
	Slide 40: Inserting a New Second Node on a List
	Slide 41: Inserting a New Second Node on a List (cont’d)
	Slide 42: Inserting a New Second Node on a List (cont’d)
	Slide 43: Inserting a New Second Node on a List (cont’d)
	Slide 44: Comments
	Slide 45: Searching for an Item on a List
	Slide 46: Searching for an Item on a List
	Slide 47: Comments
	Slide 48: Comments (cont’d)
	Slide 49: Comments (cont’d)
	Slide 50: Comments (cont’d)
	Slide 51: Comments (cont’d)
	Slide 52: Comments (cont’d)
	Slide 53: Deleting the Last Node of a List
	Slide 54: Question
	Slide 55: Deleting the Last Node of a List (cont’d)
	Slide 56: Deleting the Last Node of a List
	Slide 57: Comments
	Slide 58: Why **?
	Slide 59: Inserting a New Last Node on a List
	Slide 60: Comments
	Slide 61: Why **?
	Slide 62: Question
	Slide 63: Question (cont’d)
	Slide 64: Printing a List
	Slide 65: Examples
	Slide 66: The Main Program
	Slide 67: The Main Program (cont’d)
	Slide 68: Linked Lists vs. Arrays
	Slide 69: Linked Lists vs. Arrays
	Slide 70: Readings

